3.2.95 \(\int \frac {\tanh (c+d x)}{(a+b \tanh ^2(c+d x))^3} \, dx\) [195]

Optimal. Leaf size=94 \[ \frac {\log (\cosh (c+d x))}{(a+b)^3 d}+\frac {\log \left (a+b \tanh ^2(c+d x)\right )}{2 (a+b)^3 d}-\frac {1}{4 (a+b) d \left (a+b \tanh ^2(c+d x)\right )^2}-\frac {1}{2 (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )} \]

[Out]

ln(cosh(d*x+c))/(a+b)^3/d+1/2*ln(a+b*tanh(d*x+c)^2)/(a+b)^3/d-1/4/(a+b)/d/(a+b*tanh(d*x+c)^2)^2-1/2/(a+b)^2/d/
(a+b*tanh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3751, 455, 46} \begin {gather*} -\frac {1}{2 d (a+b)^2 \left (a+b \tanh ^2(c+d x)\right )}-\frac {1}{4 d (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}+\frac {\log \left (a+b \tanh ^2(c+d x)\right )}{2 d (a+b)^3}+\frac {\log (\cosh (c+d x))}{d (a+b)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[c + d*x]/(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

Log[Cosh[c + d*x]]/((a + b)^3*d) + Log[a + b*Tanh[c + d*x]^2]/(2*(a + b)^3*d) - 1/(4*(a + b)*d*(a + b*Tanh[c +
 d*x]^2)^2) - 1/(2*(a + b)^2*d*(a + b*Tanh[c + d*x]^2))

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh (c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx &=\frac {\text {Subst}\left (\int \frac {x}{\left (1-x^2\right ) \left (a+b x^2\right )^3} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\text {Subst}\left (\int \frac {1}{(1-x) (a+b x)^3} \, dx,x,\tanh ^2(c+d x)\right )}{2 d}\\ &=\frac {\text {Subst}\left (\int \left (-\frac {1}{(a+b)^3 (-1+x)}+\frac {b}{(a+b) (a+b x)^3}+\frac {b}{(a+b)^2 (a+b x)^2}+\frac {b}{(a+b)^3 (a+b x)}\right ) \, dx,x,\tanh ^2(c+d x)\right )}{2 d}\\ &=\frac {\log (\cosh (c+d x))}{(a+b)^3 d}+\frac {\log \left (a+b \tanh ^2(c+d x)\right )}{2 (a+b)^3 d}-\frac {1}{4 (a+b) d \left (a+b \tanh ^2(c+d x)\right )^2}-\frac {1}{2 (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.43, size = 77, normalized size = 0.82 \begin {gather*} \frac {4 \log (\cosh (c+d x))+2 \log \left (a+b \tanh ^2(c+d x)\right )-\frac {(a+b)^2}{\left (a+b \tanh ^2(c+d x)\right )^2}-\frac {2 (a+b)}{a+b \tanh ^2(c+d x)}}{4 (a+b)^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[c + d*x]/(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

(4*Log[Cosh[c + d*x]] + 2*Log[a + b*Tanh[c + d*x]^2] - (a + b)^2/(a + b*Tanh[c + d*x]^2)^2 - (2*(a + b))/(a +
b*Tanh[c + d*x]^2))/(4*(a + b)^3*d)

________________________________________________________________________________________

Maple [A]
time = 0.96, size = 116, normalized size = 1.23

method result size
derivativedivides \(\frac {-\frac {\ln \left (\tanh \left (d x +c \right )-1\right )}{2 \left (a +b \right )^{3}}+\frac {b \left (-\frac {a +b}{b \left (a +b \left (\tanh ^{2}\left (d x +c \right )\right )\right )}+\frac {\ln \left (a +b \left (\tanh ^{2}\left (d x +c \right )\right )\right )}{b}-\frac {a^{2}+2 a b +b^{2}}{2 b \left (a +b \left (\tanh ^{2}\left (d x +c \right )\right )\right )^{2}}\right )}{2 \left (a +b \right )^{3}}-\frac {\ln \left (1+\tanh \left (d x +c \right )\right )}{2 \left (a +b \right )^{3}}}{d}\) \(116\)
default \(\frac {-\frac {\ln \left (\tanh \left (d x +c \right )-1\right )}{2 \left (a +b \right )^{3}}+\frac {b \left (-\frac {a +b}{b \left (a +b \left (\tanh ^{2}\left (d x +c \right )\right )\right )}+\frac {\ln \left (a +b \left (\tanh ^{2}\left (d x +c \right )\right )\right )}{b}-\frac {a^{2}+2 a b +b^{2}}{2 b \left (a +b \left (\tanh ^{2}\left (d x +c \right )\right )\right )^{2}}\right )}{2 \left (a +b \right )^{3}}-\frac {\ln \left (1+\tanh \left (d x +c \right )\right )}{2 \left (a +b \right )^{3}}}{d}\) \(116\)
risch \(-\frac {x}{a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}}-\frac {2 c}{d \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}-\frac {4 \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}-b \,{\mathrm e}^{2 d x +2 c}+a +b \right ) b \,{\mathrm e}^{2 d x +2 c}}{\left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right )^{2} d \left (a +b \right )^{3}}+\frac {\ln \left ({\mathrm e}^{4 d x +4 c}+\frac {2 \left (a -b \right ) {\mathrm e}^{2 d x +2 c}}{a +b}+1\right )}{2 d \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}\) \(232\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*x+c)/(a+b*tanh(d*x+c)^2)^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/(a+b)^3*ln(tanh(d*x+c)-1)+1/2*b/(a+b)^3*(-(a+b)/b/(a+b*tanh(d*x+c)^2)+1/b*ln(a+b*tanh(d*x+c)^2)-1/2*
(a^2+2*a*b+b^2)/b/(a+b*tanh(d*x+c)^2)^2)-1/2/(a+b)^3*ln(1+tanh(d*x+c)))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 378 vs. \(2 (88) = 176\).
time = 0.33, size = 378, normalized size = 4.02 \begin {gather*} \frac {d x + c}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} - \frac {4 \, {\left ({\left (a b + b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (2 \, a b - b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + {\left (a b + b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )}}{{\left (a^{5} + 5 \, a^{4} b + 10 \, a^{3} b^{2} + 10 \, a^{2} b^{3} + 5 \, a b^{4} + b^{5} + 4 \, {\left (a^{5} + 3 \, a^{4} b + 2 \, a^{3} b^{2} - 2 \, a^{2} b^{3} - 3 \, a b^{4} - b^{5}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \, {\left (3 \, a^{5} + 7 \, a^{4} b + 6 \, a^{3} b^{2} + 6 \, a^{2} b^{3} + 7 \, a b^{4} + 3 \, b^{5}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, {\left (a^{5} + 3 \, a^{4} b + 2 \, a^{3} b^{2} - 2 \, a^{2} b^{3} - 3 \, a b^{4} - b^{5}\right )} e^{\left (-6 \, d x - 6 \, c\right )} + {\left (a^{5} + 5 \, a^{4} b + 10 \, a^{3} b^{2} + 10 \, a^{2} b^{3} + 5 \, a b^{4} + b^{5}\right )} e^{\left (-8 \, d x - 8 \, c\right )}\right )} d} + \frac {\log \left (2 \, {\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{2 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

(d*x + c)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) - 4*((a*b + b^2)*e^(-2*d*x - 2*c) + (2*a*b - b^2)*e^(-4*d*x - 4*
c) + (a*b + b^2)*e^(-6*d*x - 6*c))/((a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5 + 4*(a^5 + 3*a^4*
b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*e^(-2*d*x - 2*c) + 2*(3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a
*b^4 + 3*b^5)*e^(-4*d*x - 4*c) + 4*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*e^(-6*d*x - 6*c) +
(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*e^(-8*d*x - 8*c))*d) + 1/2*log(2*(a - b)*e^(-2*d*x -
 2*c) + (a + b)*e^(-4*d*x - 4*c) + a + b)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2554 vs. \(2 (88) = 176\).
time = 0.41, size = 2554, normalized size = 27.17 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

-1/2*(2*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^8 + 16*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)*sinh(d*x + c)^7 + 2
*(a^2 + 2*a*b + b^2)*d*x*sinh(d*x + c)^8 + 8*((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b
 + b^2)*d*x*cosh(d*x + c)^2 + (a^2 - b^2)*d*x + a*b + b^2)*sinh(d*x + c)^6 + 16*(7*(a^2 + 2*a*b + b^2)*d*x*cos
h(d*x + c)^3 + 3*((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 4*((3*a^2 - 2*a*b + 3*b^2)*d*x
 + 4*a*b - 2*b^2)*cosh(d*x + c)^4 + 4*(35*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^4 + (3*a^2 - 2*a*b + 3*b^2)*d*
x + 30*((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x + c)^2 + 4*a*b - 2*b^2)*sinh(d*x + c)^4 + 16*(7*(a^2 + 2*a*b + b
^2)*d*x*cosh(d*x + c)^5 + 10*((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x + c)^3 + ((3*a^2 - 2*a*b + 3*b^2)*d*x + 4*
a*b - 2*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 + 2*(a^2 + 2*a*b + b^2)*d*x + 8*((a^2 - b^2)*d*x + a*b + b^2)*cosh
(d*x + c)^2 + 8*(7*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^6 + 15*((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x + c)^4
+ (a^2 - b^2)*d*x + 3*((3*a^2 - 2*a*b + 3*b^2)*d*x + 4*a*b - 2*b^2)*cosh(d*x + c)^2 + a*b + b^2)*sinh(d*x + c)
^2 - ((a^2 + 2*a*b + b^2)*cosh(d*x + c)^8 + 8*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^2 + 2*a*b
 + b^2)*sinh(d*x + c)^8 + 4*(a^2 - b^2)*cosh(d*x + c)^6 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2
)*sinh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + 3*(a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c)^5 +
2*(3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c)^4 + 2*(35*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 30*(a^2 - b^2)*cosh(d*
x + c)^2 + 3*a^2 - 2*a*b + 3*b^2)*sinh(d*x + c)^4 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^5 + 10*(a^2 - b^2)*
cosh(d*x + c)^3 + (3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(a^2 - b^2)*cosh(d*x + c)^2 + 4*(
7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 15*(a^2 - b^2)*cosh(d*x + c)^4 + 3*(3*a^2 - 2*a*b + 3*b^2)*cosh(d*x +
c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + b^2 + 8*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^7 + 3*(a^2 - b^2)
*cosh(d*x + c)^5 + (3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c))*log(2*(
(a + b)*cosh(d*x + c)^2 + (a + b)*sinh(d*x + c)^2 + a - b)/(cosh(d*x + c)^2 - 2*cosh(d*x + c)*sinh(d*x + c) +
sinh(d*x + c)^2)) + 16*((a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^7 + 3*((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x + c
)^5 + ((3*a^2 - 2*a*b + 3*b^2)*d*x + 4*a*b - 2*b^2)*cosh(d*x + c)^3 + ((a^2 - b^2)*d*x + a*b + b^2)*cosh(d*x +
 c))*sinh(d*x + c))/((a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^8 + 8*(a^5 + 5*
a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)*sinh(d*x + c)^7 + (a^5 + 5*a^4*b + 10*a^3*b^2
 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*sinh(d*x + c)^8 + 4*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d
*cosh(d*x + c)^6 + 4*(7*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^2 + (a^5 + 3
*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d)*sinh(d*x + c)^6 + 2*(3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^
3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c)^4 + 8*(7*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh
(d*x + c)^3 + 3*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(
35*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^4 + 30*(a^5 + 3*a^4*b + 2*a^3*b^2
 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^2 + (3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*
d)*sinh(d*x + c)^4 + 4*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^2 + 8*(7*(a^5 +
 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^5 + 10*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*
b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^3 + (3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*
x + c))*sinh(d*x + c)^3 + 4*(7*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^6 + 1
5*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^4 + 3*(3*a^5 + 7*a^4*b + 6*a^3*b^2 +
 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c)^2 + (a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d)*s
inh(d*x + c)^2 + (a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d + 8*((a^5 + 5*a^4*b + 10*a^3*b^2
+ 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^7 + 3*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*
cosh(d*x + c)^5 + (3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c)^3 + (a^5 + 3*a^4
*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c))*sinh(d*x + c))

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 3412 vs. \(2 (80) = 160\).
time = 113.17, size = 3412, normalized size = 36.30 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*tanh(d*x+c)**2)**3,x)

[Out]

Piecewise((zoo*x/tanh(c)**5, Eq(a, 0) & Eq(b, 0) & Eq(d, 0)), ((x - log(tanh(c + d*x) + 1)/d)/a**3, Eq(b, 0)),
 (1/(6*b**3*d*tanh(c + d*x)**6 - 18*b**3*d*tanh(c + d*x)**4 + 18*b**3*d*tanh(c + d*x)**2 - 6*b**3*d), Eq(a, -b
)), (x*tanh(c)/(a + b*tanh(c)**2)**3, Eq(d, 0)), (4*a**2*d*x/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4
*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh
(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tan
h(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 2*a**2*log(-sqrt(-a/b) + tanh(c + d*x))/(4*a**5*d + 8*a**4*b*d*ta
nh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2
*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*tanh(c +
d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 2*a**2*log(sqrt(-a/b) + tanh(c + d*x))/(4
*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c +
 d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b**3*d
+ 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) - 4*a**2*log(tanh(c
+ d*x) + 1)/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b
**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 +
4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) - 3*a*
*2/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tan
h(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b*
*3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 8*a*b*d*x*tan
h(c + d*x)**2/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3
*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2
+ 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 4*
a*b*log(-sqrt(-a/b) + tanh(c + d*x))*tanh(c + d*x)**2/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d +
4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*
x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d
*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 4*a*b*log(sqrt(-a/b) + tanh(c + d*x))*tanh(c + d*x)**2/(4*a**5*d + 8*a**
4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c + d*x)**2 + 12*a
**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*t
anh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) - 8*a*b*log(tanh(c + d*x) + 1)*tanh
(c + d*x)**2/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*
b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 +
 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) - 2*a
*b*tanh(c + d*x)**2/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 2
4*a**3*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*
x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4
) - 4*a*b/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**
2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*
a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 4*b**2
*d*x*tanh(c + d*x)**4/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 +
 24*a**3*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c +
d*x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*tanh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)*
*4) + 2*b**2*log(-sqrt(-a/b) + tanh(c + d*x))*tanh(c + d*x)**4/(4*a**5*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a*
*4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c + d*x)**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*ta
nh(c + d*x)**4 + 24*a**2*b**3*d*tanh(c + d*x)**2 + 4*a**2*b**3*d + 12*a*b**4*d*tanh(c + d*x)**4 + 8*a*b**4*d*t
anh(c + d*x)**2 + 4*b**5*d*tanh(c + d*x)**4) + 2*b**2*log(sqrt(-a/b) + tanh(c + d*x))*tanh(c + d*x)**4/(4*a**5
*d + 8*a**4*b*d*tanh(c + d*x)**2 + 12*a**4*b*d + 4*a**3*b**2*d*tanh(c + d*x)**4 + 24*a**3*b**2*d*tanh(c + d*x)
**2 + 12*a**3*b**2*d + 12*a**2*b**3*d*tanh(c + ...

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (88) = 176\).
time = 0.53, size = 245, normalized size = 2.61 \begin {gather*} \frac {\frac {2 \, \log \left ({\left | a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 2 \, a - 2 \, b \right |}\right )}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} - \frac {3 \, a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 3 \, b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 12 \, a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 4 \, b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 12 \, a - 4 \, b}{{\left (a^{2} + 2 \, a b + b^{2}\right )} {\left (a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 2 \, a - 2 \, b\right )}^{2}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/4*(2*log(abs(a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 2*a - 2*b))/(
a^3 + 3*a^2*b + 3*a*b^2 + b^3) - (3*a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 + 3*b*(e^(2*d*x + 2*c) + e^(-2*d*
x - 2*c))^2 + 12*a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 4*b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 12*a - 4*
b)/((a^2 + 2*a*b + b^2)*(a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 2*a
 - 2*b)^2))/d

________________________________________________________________________________________

Mupad [B]
time = 2.25, size = 235, normalized size = 2.50 \begin {gather*} \frac {\ln \left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}{2\,d\,a^3+6\,d\,a^2\,b+6\,d\,a\,b^2+2\,d\,b^3}-\frac {\ln \left (1-\mathrm {tanh}\left (c+d\,x\right )\right )}{2\,d\,a^3+6\,d\,a^2\,b+6\,d\,a\,b^2+2\,d\,b^3}-\frac {\ln \left (\mathrm {tanh}\left (c+d\,x\right )+1\right )}{2\,d\,a^3+6\,d\,a^2\,b+6\,d\,a\,b^2+2\,d\,b^3}+\frac {\frac {{\mathrm {tanh}\left (c+d\,x\right )}^4\,\left (\frac {b^3}{4}+\frac {3\,a\,b^2}{4}\right )}{a^2\,d\,\left (a^2+2\,a\,b+b^2\right )}+\frac {{\mathrm {tanh}\left (c+d\,x\right )}^2\,\left (\frac {b^2}{2}+a\,b\right )}{a\,d\,\left (a^2+2\,a\,b+b^2\right )}}{a^2+2\,a\,b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+b^2\,{\mathrm {tanh}\left (c+d\,x\right )}^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(c + d*x)/(a + b*tanh(c + d*x)^2)^3,x)

[Out]

log(a + b*tanh(c + d*x)^2)/(2*a^3*d + 2*b^3*d + 6*a*b^2*d + 6*a^2*b*d) - log(1 - tanh(c + d*x))/(2*a^3*d + 2*b
^3*d + 6*a*b^2*d + 6*a^2*b*d) - log(tanh(c + d*x) + 1)/(2*a^3*d + 2*b^3*d + 6*a*b^2*d + 6*a^2*b*d) + ((tanh(c
+ d*x)^4*((3*a*b^2)/4 + b^3/4))/(a^2*d*(2*a*b + a^2 + b^2)) + (tanh(c + d*x)^2*(a*b + b^2/2))/(a*d*(2*a*b + a^
2 + b^2)))/(a^2 + b^2*tanh(c + d*x)^4 + 2*a*b*tanh(c + d*x)^2)

________________________________________________________________________________________